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‘What Happened to My C
Your important files are encrypted.
Many of your d photos, videos, datab and other files are no longer
accessible because they have been encrypted. Maybe you are busy looking for a way to
recover your files, but do not waste your time. Nobody can recover your files without
lour decryption service.

puter?

Payment will be raised

Can I Recover My Files?
[Sure. We guarantee that you can recover all your files safely and easily. But you have
not 50 enough time.

Time Left You can decrypt some of your files for free. Try now by clicking <Decrypt>

But if you want to decrypt all your files, you need to pay.

You only have 3 days to submit the payment. After that the price will be doubled.
Also, if you don’t pay in 7 days, you won't be able to recover your files forever.

'We will have free events for users who are so poor that they couldn't pay in 6 months.

Your files will be lost on

How Do I Pay?

Payment is accepted in Bitcoin only. For more information, click <About bitcoin>.
Please check the current price of Bitcoin and buy some bitcoins. For more information,
click <How to buy bitcoins=,
And send the correct amount to the address specified in this window.

After your payment, click <Check Payment>. Best time to check: 9:00am - 11:00am

M7 00:

Time

Send $3 rth of bitcoin to this addre:

bitcoin
Flaez =0 | 12t9YDPgwueZ9NyMgw519pTAABIsjrE SMw

Contact Us Check Payment
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Tell Us Something

What is Malicious Code?
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Malicious Code

@ Code in any part of a software system or script that is intended to
cause,
o undesired effects,
e security breaches, or,
e damage to a system.
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Statistics

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Total Malware Infection Growth Rate (In Millions)
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ECE 2020

Octopus Scanner
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Our Goal

o Identifying malware embedded in source code without having to
execute the code.

icece.buet.ac.bd Navid, Static Detection of Malicious Code 9/ 46



Outline

© Current Trends
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Current Trends

@ There are about two ways of detecting malicious code:
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Current Trends

@ There are about two ways of detecting malicious code:

e Dynamic Detection
e Static Detection
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Dynamic Detection

@ The suspected malware is executed in a closely monitored sandboxed
environment.
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Dynamic Detection

@ The suspected malware is executed in a closely monitored sandboxed
environment.

@ Despite the sandboxed environment, one still runs the risk of infecting
one's system with the malware.
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Static Detection

@ The most commonly employed process leverages information such as
control-API graph and crosschecks against a predefined security
policy to give a verdict.
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Static Detection

@ The most commonly employed process leverages information such as
control-API graph and crosschecks against a predefined security
policy to give a verdict.

@ The security policies themselves can be compromised. \
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Machine Learning Approach

@ The modern machine learning and deep learning approaches make use
of neural networks such as CNN, GCN, RNN etc.
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Machine Learning Approach

@ The modern machine learning and deep learning approaches make use
of neural networks such as CNN, GCN, RNN etc.

@ These models require huge datasets and demanding processing power
which leads to substantial preprocessing and computing time.
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Novelty of Our Work

@ As we can see, the aforementioned methods of detecting malicious
code require,
e the inspection of executables, or
e a predefined security policy, or
e huge datasets and computation time.
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@ We eliminate these requirements by introducing ontology in this
domain.
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Novelty of Our Work

@ As we can see, the aforementioned methods of detecting malicious
code require,

e the inspection of executables, or
e a predefined security policy, or
e huge datasets and computation time.
@ We eliminate these requirements by introducing ontology in this
domain.
@ We probe the source code and perform semantic identification of
malicious code.
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Ontology

@ In computer science and information science, an ontology
encompasses,

e a representation of the categories, properties,
o relations between the concepts, data and entities.
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Components of Ontology

Components

@ There are four components in an ontology,

o Class

o Object Property
o Data Property
o Individuals
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Example Ontology

Vepgie-
Pizza

hasTDpplng
[some]=

e h_asTnppmg [snmel_ = -

hasTonping [somel
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Resources Used

Protege: An open source ontology editor and knowledge management
system.
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Resources Used

Protege: An open source ontology editor and knowledge management
system.

Java Code Ontology: An ontology illustrating the relationships amongst
the building blocks of Java programming language.
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Methodology
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Methodology

o ldentifying signatures by studying the source code.
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Methodology

Identifying signatures by studying the source code.

@ Incorporating ontology classes corresponding to signatures.
@ Establishing relationships among the signatures.
°

Relating the signature classes to themselves to counteract code
obfuscation.
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|dentifying Signatures

@ As an example attempt, we have applied our methodology on the
source code of DDoS attack.
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DDoS Attack

DDoS Attack

Attacker Computers

2§ = H
LK

Real Users

2§ R .

Clean Traffic

Malicious Traffic
_________ . Internet Target Server
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|dentifying Signatures

Signature Type 1
@ Thread Class
@ openConnection Method
o setRequestMethod Method
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|dentifying Signatures

Signature Type 1
@ Thread Class
@ openConnection Method
o setRequestMethod Method

Signature Type 2
@ Thread Class

@ Socket Class
e DataOutputStream Method
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Creating Corresponding Ontology Classes

@ We create an ontology class named Imports.
@ As its subclasses we create the following:
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Creating Corresponding Ontology Classes

@ We create an ontology class named Imports.
@ As its subclasses we create the following:

© JavalangThread
© OpenConnection
© SetRequest

© JavaNetSocket

© DataOutputStream

@ These classes represent library methods shipped with Java API.
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Imports

# 'java.net.Sock
et-Sacket(java....

& JavaNetSocket
./'
>
-
Q 'j
S java.net.Http
? SetRequest | = URLCennection-s...
) ¢ "java.net.URL-
g openConnectioni...
s avalangThread =
- -
~
s
~
= - "Java.io.Data0
(=] E‘amﬂumuﬁtrea 2 ¢ utputStream-Dat...

-

el g .
Fe Impnrt‘s — © OpenConnection | —

va.lang.Threa
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Imports

@ We assert that, any method that contains calls to a signature method
will also be an individual of the said signature method.

@ This relationship is expressed through an object property called
references.

-9
e SetRequest

® = openConnection l D

e JavaNetSocket I D

¥ = DataOutputStrea ’ =
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Creating Corresponding Ontology Classes

DDoS Suspect
@ It is a subclass of the ontology class Method.
@ This references either of the signature types.

@ DDoS_Suspect also references itself.
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DDoS Suspect

Equivalent To

© (Method
and ((references some DataQutputStream)
and (references some JavaNetSocket))) or (Method
and ({references some OpenConnection)
and (references some SetRequest))) or (references some DDos_Suspect)

SubClass Of
¢ Method
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Creating Corresponding Ontology Classes

@ It is a subclass of the ontology class Class.

o It extends JavalLangThread.
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Description: Thread

Equivalent To

@
and (extends only JavaLangThread)

SubClass Of
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Creating Corresponding Ontology Classes

Malicious_Thread
@ It is a subclass of the ontology class Thread.

@ It has an instance of DDoS_Suspect as one of its methods.
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Malicious_Thread

Description: Malicious_Thread

Equivalent To

¢ Thread
and ("has method' some DDos_Suspect)

SubClass Of

& Thread
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Creating Corresponding Ontology Classes

DDoS_Method

@ It is a subclass of the ontology class Method.

@ It constructs Malicious_Thread.
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DDoS_Method

Description: DDOS_Method

Equivalent To

¢ constructs some Malicious Thread

SubClass Of

{ Method
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Creating Corresponding Ontology Classes

4 'java.net.URL-
M { openConnection(...

= " JavaNetSocket
~ £ DDOS_Method . -

//// \\\
SetRequest
OpenConnection

| 4 "java.io.DataO
utputStream-Dat...

|

~

s
A

# 'java.net.Http
URLConnection-s...

# java.ang.Threa
d
\ Ic\‘llalicious_Threa ¢ "java.net.Sock
- . et-Socket(java....
\\\\ /
DataOutputStrea
: *
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© Experiments and Results
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Experiment 1

references CpenConnection

references

hasMethod references

SetRequestMethod

constructs

extends

DDoS_Thread Thread
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Experiment 2 (Code Obfuscation)

references

OpenConnection
references

references

references
hasMethod

construcis extends
main DDoS_Thread Thread

references

SetRequestMethod
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Experiment 3

references

DataQutputStream

references

hasMethod references

constructs

extends

DDoS_Thread Thread
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Description: DDOS_Method

Equivalent To
@ constructs some Malicious_Thread

SubClass of
' Method

General class axioms

SubClass Of (Anonymous Ancestor)
@ 'is var args' some xsd:boolean
©'has modifier' some Modifier
@ 'has modifier exactly 1 'Access Modifier

Instances

& main

. icece.buet.ac.bd Navid, Static Detection of Malicious Code 42 / 46



Outline

@ Conclusion and Fututre Works
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Conclusion

@ We have successfully detected the DDoS Attack for two different sets
of signatures.

@ We have also alleviated the threat posed by code obfuscation.
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Future Works

@ We are currently working on the detection of Starvation and
Dictionary attacks.

@ We intend to build on our current work and try to bring as many
common malware as possible under the radar of our detection system.
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Conclusion

Thank youl!
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Conclusion

Thank youl!

Any Questions?
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