11" INTERNATIONAL
CONFERENGE ON

ELECTRICAL AND COMPUTER ENGINEERING (ICECE)

@ December 17-19, 2020 9 BUET, Dhaka, Bangladesh @ icece.buet.ac.bd |H ”mm Conference Record Number: #51571

parer Ip Otatic Detection of Malicious Code in Programs
828 Using Semantic Techniques

Syed Zami-Ul-Haque Navid, Protik Dey, Shamiul Hasan, and
Muhammad Masroor Ali
Department of Computer Science and Engineering
Bangladesh University of Engineering and Technology
Dhaka, Bangladesh

icece.buet.ac.bd Navid, Static Detection of Malicious Code 1/46

© Introduction

© Objectives

© Current Trends

@ Methodology

© Experiments and Results

@ Conclusion and Fututre Works

icece.buet.ac.bd Navid, Static Detection of Malicious Code 1/46

Outline

© Introduction

icece.buet.ac.bd Navid, Static Detection of Malicious Code 2 /46

‘What Happened to My C
Your important files are encrypted.
Many of your d photos, videos, datab and other files are no longer
accessible because they have been encrypted. Maybe you are busy looking for a way to
recover your files, but do not waste your time. Nobody can recover your files without
lour decryption service.

puter?

Payment will be raised

Can I Recover My Files?
[Sure. We guarantee that you can recover all your files safely and easily. But you have
not 50 enough time.

Time Left You can decrypt some of your files for free. Try now by clicking <Decrypt>

But if you want to decrypt all your files, you need to pay.

You only have 3 days to submit the payment. After that the price will be doubled.
Also, if you don’t pay in 7 days, you won't be able to recover your files forever.

'We will have free events for users who are so poor that they couldn't pay in 6 months.

Your files will be lost on

How Do I Pay?

Payment is accepted in Bitcoin only. For more information, click <About bitcoin>.
Please check the current price of Bitcoin and buy some bitcoins. For more information,
click <How to buy bitcoins=,
And send the correct amount to the address specified in this window.

After your payment, click <Check Payment>. Best time to check: 9:00am - 11:00am

M7 00:

Time

Send $3 rth of bitcoin to this addre:

bitcoin
Flaez =0 | 12t9YDPgwueZ9NyMgw519pTAABIsjrE SMw

Contact Us Check Payment

icece.buet.ac.bd Navid, Static Detection of Malicious Code 3/ 46

Tell Us Something

What is Malicious Code?

icece.buet.ac.bd Navid, Static Detection of Malicious Code 4/ 46

Malicious Code

@ Code in any part of a software system or script that is intended to
cause,
o undesired effects,
e security breaches, or,
e damage to a system.

icece.buet.ac.bd Navid, Static Detection of Malicious Code 5/ 46

Statistics

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Total Malware Infection Growth Rate (In Millions)

icece.buet.ac.bd Navid, Static Detection of Malicious Code 6/ 46

ECE 2020

Octopus Scanner

icece.buet.ac.bd Navid, Static Detection of Malicious Code

Outline

© Objectives

icece.buet.ac.bd Navid, Static Detection of Malicious Code 8/ 46

Our Goal

o Identifying malware embedded in source code without having to
execute the code.

icece.buet.ac.bd Navid, Static Detection of Malicious Code 9/ 46

Outline

© Current Trends

icece.buet.ac.bd Navid, Static Detection of Malicious Code 10 / 46

Current Trends

@ There are about two ways of detecting malicious code:

icece.buet.ac.bd Navid, Static Detection of Malicious Code 11/ 46

Current Trends

@ There are about two ways of detecting malicious code:
e Dynamic Detection

icece.buet.ac.bd Navid, Static Detection of Malicious Code 11/ 46

Current Trends

@ There are about two ways of detecting malicious code:

e Dynamic Detection
e Static Detection

icece.buet.ac.bd Navid, Static Detection of Malicious Code 11/ 46

Dynamic Detection

@ The suspected malware is executed in a closely monitored sandboxed
environment.

icece.buet.ac.bd Navid, Static Detection of Malicious Code 12 / 46

Dynamic Detection

@ The suspected malware is executed in a closely monitored sandboxed
environment.

@ Despite the sandboxed environment, one still runs the risk of infecting
one's system with the malware.

icece.buet.ac.bd Navid, Static Detection of Malicious Code 12 / 46

Static Detection

@ The most commonly employed process leverages information such as
control-API graph and crosschecks against a predefined security
policy to give a verdict.

icece.buet.ac.bd Navid, Static Detection of Malicious Code 13 / 46

Static Detection

@ The most commonly employed process leverages information such as
control-API graph and crosschecks against a predefined security
policy to give a verdict.

@ The security policies themselves can be compromised. \

icece.buet.ac.bd Navid, Static Detection of Malicious Code 13 / 46

Machine Learning Approach

@ The modern machine learning and deep learning approaches make use
of neural networks such as CNN, GCN, RNN etc.

icece.buet.ac.bd Navid, Static Detection of Malicious Code 14 / 46

Machine Learning Approach

@ The modern machine learning and deep learning approaches make use
of neural networks such as CNN, GCN, RNN etc.

@ These models require huge datasets and demanding processing power
which leads to substantial preprocessing and computing time.

icece.buet.ac.bd Navid, Static Detection of Malicious Code 14 / 46

Outline

@ Methodology

icece.buet.ac.bd Navid, Static Detection of Malicious Code 15 / 46

Novelty of Our Work

@ As we can see, the aforementioned methods of detecting malicious
code require,
e the inspection of executables, or
e a predefined security policy, or
e huge datasets and computation time.

icece.buet.ac.bd Navid, Static Detection of Malicious Code 16 / 46

Novelty of Our Work

@ As we can see, the aforementioned methods of detecting malicious
code require,

e the inspection of executables, or
e a predefined security policy, or
e huge datasets and computation time.
@ We eliminate these requirements by introducing ontology in this
domain.

icece.buet.ac.bd Navid, Static Detection of Malicious Code 16 / 46

Novelty of Our Work

@ As we can see, the aforementioned methods of detecting malicious
code require,

e the inspection of executables, or
e a predefined security policy, or
e huge datasets and computation time.
@ We eliminate these requirements by introducing ontology in this
domain.
@ We probe the source code and perform semantic identification of
malicious code.

icece.buet.ac.bd Navid, Static Detection of Malicious Code 16 / 46

Ontology

@ In computer science and information science, an ontology
encompasses,

e a representation of the categories, properties,
o relations between the concepts, data and entities.

icece.buet.ac.bd Navid, Static Detection of Malicious Code 17 / 46

Components of Ontology

Components

@ There are four components in an ontology,

o Class

o Object Property
o Data Property
o Individuals

icece.buet.ac.bd Navid, Static Detection of Malicious Code 18 / 46

Example Ontology

Vepgie-
Pizza

hasTDpplng
[some]=

e h_asTnppmg [snmel_ = -

hasTonping [somel

icece.buet.ac.bd Navid, Static Detection of Malicious Code 19 / 46

Resources Used

Protege: An open source ontology editor and knowledge management
system.

icece.buet.ac.bd Navid, Static Detection of Malicious Code 20 / 46

Resources Used

Protege: An open source ontology editor and knowledge management
system.

Java Code Ontology: An ontology illustrating the relationships amongst
the building blocks of Java programming language.

icece.buet.ac.bd Navid, Static Detection of Malicious Code 20 / 46

icece.buet.ac.bd

Code Ontology

g Executable
~ >
@ 'Type Argument’
- ~

© g Interface | A

Navid, Static Detection of Malicious Code

'Control Flow .
T Statemei h

Methodology

icece.buet.ac.bd Navid, Static Detection of Malicious Code 22 / 46

Methodology

o ldentifying signatures by studying the source code.

icece.buet.ac.bd Navid, Static Detection of Malicious Code 22 / 46

Methodology

o ldentifying signatures by studying the source code.

@ Incorporating ontology classes corresponding to signatures.

icece.buet.ac.bd Navid, Static Detection of Malicious Code 22 / 46

Methodology

o ldentifying signatures by studying the source code.

@ Incorporating ontology classes corresponding to signatures.

@ Establishing relationships among the signatures.

icece.buet.ac.bd Navid, Static Detection of Malicious Code 22 / 46

Methodology

Identifying signatures by studying the source code.

@ Incorporating ontology classes corresponding to signatures.
@ Establishing relationships among the signatures.
°

Relating the signature classes to themselves to counteract code
obfuscation.

icece.buet.ac.bd Navid, Static Detection of Malicious Code 22 / 46

|dentifying Signatures

@ As an example attempt, we have applied our methodology on the
source code of DDoS attack.

icece.buet.ac.bd Navid, Static Detection of Malicious Code 23 / 46

DDoS Attack

DDoS Attack

Attacker Computers

2§ = H
LK

Real Users

2§ R .

Clean Traffic

Malicious Traffic
_________ . Internet Target Server

icece.buet.ac.bd Navid, Static Detection of Malicious Code 24 / 46

|dentifying Signatures

Signature Type 1
@ Thread Class
@ openConnection Method
o setRequestMethod Method

icece.buet.ac.bd Navid, Static Detection of Malicious Code 25 / 46

|dentifying Signatures

Signature Type 1
@ Thread Class
@ openConnection Method
o setRequestMethod Method

Signature Type 2
@ Thread Class

@ Socket Class
e DataOutputStream Method

icece.buet.ac.bd Navid, Static Detection of Malicious Code 25 / 46

Creating Corresponding Ontology Classes

@ We create an ontology class named Imports.
@ As its subclasses we create the following:

icece.buet.ac.bd Navid, Static Detection of Malicious Code 26 / 46

Creating Corresponding Ontology Classes

@ We create an ontology class named Imports.
@ As its subclasses we create the following:

© JavalangThread
© OpenConnection
© SetRequest

© JavaNetSocket

© DataOutputStream

@ These classes represent library methods shipped with Java API.

icece.buet.ac.bd Navid, Static Detection of Malicious Code 26 / 46

Imports

'java.net.Sock
et-Sacket(java....

& JavaNetSocket
./'
>
-
Q 'j
S java.net.Http
? SetRequest | = URLCennection-s...
) ¢ "java.net.URL-
g openConnectioni...
s avalangThread =
- -
~
s
~
= - "Java.io.Data0
(=] E‘amﬂumuﬁtrea 2 ¢ utputStream-Dat...

-

el g .
Fe Impnrt‘s — © OpenConnection | —

va.lang.Threa

icece.buet.ac.bd Navid, Static Detection of Malicious Code 27 / 46

Imports

@ We assert that, any method that contains calls to a signature method
will also be an individual of the said signature method.

@ This relationship is expressed through an object property called
references.

-9
e SetRequest

® = openConnection l D

e JavaNetSocket I D

¥ = DataOutputStrea ’ =

icece.buet.ac.bd Navid, Static Detection of Malicious Code 28 / 46

Creating Corresponding Ontology Classes

DDoS Suspect
@ It is a subclass of the ontology class Method.
@ This references either of the signature types.

@ DDoS_Suspect also references itself.

icece.buet.ac.bd Navid, Static Detection of Malicious Code

29 / 46

DDoS Suspect

Equivalent To

© (Method
and ((references some DataQutputStream)
and (references some JavaNetSocket))) or (Method
and ({references some OpenConnection)
and (references some SetRequest))) or (references some DDos_Suspect)

SubClass Of
¢ Method

icece.buet.ac.bd Navid, Static Detection of Malicious Code 30 / 46

Creating Corresponding Ontology Classes

@ It is a subclass of the ontology class Class.

o It extends JavalLangThread.

icece.buet.ac.bd Navid, Static Detection of Malicious Code 31 /46

Description: Thread

Equivalent To

@
and (extends only JavaLangThread)

SubClass Of

icece.buet.ac.bd Navid, Static Detection of Malicious Code 32 /46

Creating Corresponding Ontology Classes

Malicious_Thread
@ It is a subclass of the ontology class Thread.

@ It has an instance of DDoS_Suspect as one of its methods.

icece.buet.ac.bd Navid, Static Detection of Malicious Code 33 /46

Malicious_Thread

Description: Malicious_Thread

Equivalent To

¢ Thread
and ("has method' some DDos_Suspect)

SubClass Of

& Thread

icece.buet.ac.bd Navid, Static Detection of Malicious Code 34 /46

Creating Corresponding Ontology Classes

DDoS_Method

@ It is a subclass of the ontology class Method.

@ It constructs Malicious_Thread.

icece.buet.ac.bd Navid, Static Detection of Malicious Code 35 /46

DDoS_Method

Description: DDOS_Method

Equivalent To

¢ constructs some Malicious Thread

SubClass Of

{ Method

icece.buet.ac.bd Navid, Static Detection of Malicious Code 36 / 46

Creating Corresponding Ontology Classes

4 'java.net.URL-
M { openConnection(...

= " JavaNetSocket
~ £ DDOS_Method . -

//// \\\
SetRequest
OpenConnection

| 4 "java.io.DataO
utputStream-Dat...

|

~

s
A

'java.net.Http
URLConnection-s...

java.ang.Threa
d
\ Ic\‘llalicious_Threa ¢ "java.net.Sock
- . et-Socket(java....
\\\\ /
DataOutputStrea
: *

icece.buet.ac.bd Navid, Static Detection of Malicious Code 37 /46

N JavaLangThread
\\ h -

AN

Outline

© Experiments and Results

icece.buet.ac.bd Navid, Static Detection of Malicious Code 38 /46

Experiment 1

references CpenConnection

references

hasMethod references

SetRequestMethod

constructs

extends

DDoS_Thread Thread

icece.buet.ac.bd Navid, Static Detection of Malicious Code 39 / 46

Experiment 2 (Code Obfuscation)

references

OpenConnection
references

references

references
hasMethod

construcis extends
main DDoS_Thread Thread

references

SetRequestMethod

icece.buet.ac.bd Navid, Static Detection of Malicious Code 40 / 46

Experiment 3

references

DataQutputStream

references

hasMethod references

constructs

extends

DDoS_Thread Thread

icece.buet.ac.bd Navid, Static Detection of Malicious Code 41 / 46

Description: DDOS_Method

Equivalent To
@ constructs some Malicious_Thread

SubClass of
' Method

General class axioms

SubClass Of (Anonymous Ancestor)
@ 'is var args' some xsd:boolean
©'has modifier' some Modifier
@ 'has modifier exactly 1 'Access Modifier

Instances

& main

. icece.buet.ac.bd Navid, Static Detection of Malicious Code 42 / 46

Outline

@ Conclusion and Fututre Works

icece.buet.ac.bd Navid, Static Detection of Malicious Code 43 / 46

Conclusion

@ We have successfully detected the DDoS Attack for two different sets
of signatures.

@ We have also alleviated the threat posed by code obfuscation.

icece.buet.ac.bd Navid, Static Detection of Malicious Code 44 / 46

Future Works

@ We are currently working on the detection of Starvation and
Dictionary attacks.

@ We intend to build on our current work and try to bring as many
common malware as possible under the radar of our detection system.

icece.buet.ac.bd Navid, Static Detection of Malicious Code 45 / 46

Conclusion

Thank youl!

icece.buet.ac.bd Navid, Static Detection of Malicious Code 46 / 46

Conclusion

Thank youl!

Any Questions?

icece.buet.ac.bd Navid, Static Detection of Malicious Code 46 / 46

	Introduction
	Objectives
	Current Trends
	Methodology
	Experiments and Results
	Conclusion and Fututre Works

